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1. Introduction

The search for wavelet bases has been an active eld for many years, since
the beginning of the 1990’s. Wavelet concepts have unfolded their full
computational efficiency mainly in harmonic analysis (for the study of
Calderon-Zygmund operators) and in signal analysis. In general, constructions
use either the basis of I. Daubechies or the spline basis without theoretical
construction. The wavelet expansions induce isomor-phisms between function
and sequence spaces. It means that certain Sobolev or Besov norms of
functions are equivalent to weighted sequence norms for the coecients in
their wavelet expansions. The wavelets have cancelation properties that are
usually expressed in terms of vanishing polynomial moments. The combination
of the two previous properties of wavelets provides a rigorous analysis of
adaptative schemes for elliptic problems. Moreover, nonlinear approximation
is an important concept related to adaptative approximation. The multiscale
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bases have been existed for a long time in search of Haar, Franklin and
Littlewood-Paley. They are widely used in many scientic domains as numerical
analysis or theoretical physics. The scaling and wavelet functions within a
biorthogonalization process are generated by locally supported zonal kernel
functions. As applications,they are applied successfully to geophysically and
geodetically relevant problems involving rotation-invariant pseudodierential
operators (Freeden et Al (2007)).

We construct in this paper general biorthogonal multiresolution analyses
and the associated biorthogonal wavelet bases. The scaling spaces are
constructed in an elementary way. The main contribution offered in this
paper which diers from the other constructions is the realization of global
higher regularity by more elementary techniques than perhaps those involved
in (Cohen et Al(2000), Dahmen et al (2000) and Jouini (2007)). The global
regularity is sucient for applications and the bases are easy to implement.

Section 2 is devoted to the description of Riesz bases and dual bases
which will be useful for the remainder of the work.

In section 3, we construct and study in the first part the scaling spaces
of a general biorthogonal multiresolution. This construction is not complicated
and not technical because the scaling spaces are constructed in an elementary
way. In the second part, we describe the associated wavelets and we prove
the commutation properties between projectors and derivation.

In the last section and as applications, we characterize regular spaces
namely Sobolev spaces in terms of discrete norm equivalences.

2. Riesz Bases and Dual Bases

We start this section with the mother wavelet notion, the basic function in
wavelet theory. Next, We dene the Riesz basis

Definition 2.1 A family (e,),_, is a Riesz basis of a Hilbert space H if
there exist two constants C, > C, > 0 such that, for every sequence (o) of
(3(Z), we have

1 1
¢ (Zlak|2)2 < ”Z o6l < G, (Z|ak|2)2 : (2.1)
keZ keZ keZ

and the nite linear combinations Zo, e, are dense in H.

Definition 2.2 The wavelet function of J. Morlet is a function y € L(R)
M LA(R) such that

¢, ="

v

OIS (2.2)

where (&) is the classical Fourier transform of y given by:
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WO = [, wlw)e e,
and (0 < ¢, < +) and C, 1s independent of E,
Remark 2.1
i) If y(&) is real, C, is independent of &.
In fact by the variable change (z = ), C’W becomes

J-+w
o

ii) The conditions of definition 2.2 are satisfied if:

2 dt
2

v(E)(@)

o (&) isreal

e (&) is continuous at 0

e There exists a constant o > 0 such that y(§) = 0(|&|*) near 0.
Proposition 2.1 Let g(z) be a function of L*(R) such that

J'(l + $2)|g(l')|2 dz > oo. (2.3)

Then, there exists a constant C such that for every sequence (o), , in

IX(Z); Z,_,0.9(x — k) belongs to L*(R) and we have

(i

;akg*(x—k)r dgc)l/2 < C’(};pklg); (2.4)

hoZ,

Definition 2.3 The functions (g(z — k))(kez) are said to be quantitatively
independent if there exists a constant y > 0 such that

Zockg*(a;—k)r dx)% > y(2|ock|2)l/2 (2.5)

o
-[773 7
( = keZ

for every sequence (a,) of scalars.

Lemma 2.1 Let (g(z— k))(keZ) be a generating family of a closed subspace
V, of L(R) is a Riesz Basis of V, if and only if

(é]g(g + 2kn)|2)1/2 >vy>0. (2.6)

Proof. Using the Plancherel Formula and the inequality (2.5) , we get
the inequality (2.6).
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Definition 2.4 The dual basis (¢'(z — k)), of (g(z — k)), is given by:
(&)= 4(&)/o(®) (2.7)
where
o(&) = X |9(& + 2km).
keZ
Properties 2.1
i) The dual basis of (g'(z— k), is (g(z— k),
ii) The functions fof V| are written as,
f@) =Y a9z —Fk) (2.8)
keZ
where
(2l =141
keZ
iii) Using the Fourier transform, we get:
7€) = M(&)a(®)
where
M(E) =Y ae™ e I}(0,2m)
kel
and
M(E + 2m) = M(E)
iv) If (¢(z — k)) 5 is an other Riesz basis of V{, then we get
9(8) = m(8)9(8)
where
m(§ + 27) = m(&)
and
0 <y,<|m(§) < C,.
v) It is obvious to construct an orthonormal basis (@(z— k), of V. We

must have two properties:

a) ¢@(z— k) is a Riesz basis and the dual basis of ¢(z — k) must be ¢(z
- k).

b) We must get

®(8) = m(&)4(8),
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and

~ 1
zkezkp(& +2km)| =1.
This sequence can be expressed as |W(E)|*> o(&) and then we get
1

|m(€)" = @)

It is possible due to the inequality (2.5).
Remark 2.2 We deduce immediately the following properties of ¢:
i) The functions (g(z — k), form a Riesz basis of V,, if we have:

0<y< Y |§E+2km) < C. (2.9)

ii) The UVJ is dense in L*(R); if the function g veries
J

§(0) = 0 and §(2kn) =0k eZ". (2.10)
iii) The inclusion V. c V1 is true when
g(z) < V|
or
keZ
where

a = J: g(2)g" (2x + k)dz, and a, € ?

iv) The dual basis in V| of the functions (g(2z — k)) is given by
(29' (22 + 1)) ez
v) If g(z) is regular, then the function

(&) = > |3(& + 2km)’

kel

(keZ)

1
is regular and 27n-periodic. The function (&) have the same properties

and can be written as:

1

P ikE
R

where the coefficients y, are rapidly decreasing, then the dual function
is dened by

9 (x) =Y v,9(z+Fk).

keZ
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We conclude that the function g'(z) is regular and the coefficients o, are
rapidly decreasing

vi) Using the Fourier transform in (2.11), we get:
9(8) = w(§/2)9(5/ 2) (2.12)
where

keZ

3. Biorthogonal Multiresolution Analyses
Definition 3.1 Let A, B two closed subspaces of a Hilbert space H. A and B
are in duality for the scalar product of H if
H= A® B-
We have then the following result.

Proposition 3.1 Let A, B be two closed subspaces of a Hilbert space H.
Then, the following properties are equivalent:

i) H=A® B-
ii) The orthogonal projector from H on B is an isomorphism from A to B.

iii) For every Riesz basis (b,) of B there exists a Riesz basis (a,) of A such
that

< a,/b > =38,
iv) There exists a continuous projector P such that
P(H) = A and P*{0} = B".
Proof. In fact, we define P and P by

(h):2< h/b, >, a,,

=Y <h/a, >, b,

Then the conditions described above are symmetric for A and B.

Definition 3.2 A multiresolution analysis is a sequence (V) _, of closed
linear sub-spaces of I?(R) such that:

(1) VeV

1

ii) f(x) e V.o fl2z) e V,

J+1°

(
(iii) "V, = {0} and UV, is dense in L*(R).
(iv) flz) e V, = flz— ) e V  for every k € Z.
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(v) There exists a function g(z) in V, such that the sequence {g(z — k)},_,
form a Riesz basis of V :
Properties 3.1

(i) If we denote P, the orthogonal projector from L*(R) in V. Then the
property (iii) of Definition 3.2 can be expressed by the projectors P
We have

fim [], =© and Rm /- £f], =0 (3.1)

jo—0

(ii) The properties (ii) and (iv) give
Pf = écj.k‘gi,k where g,(z) = g(2z - k).

Definition 3.3 Let V. and Vj* be two multiresolution analyses of L?(R).
Then (Vj, V) is called a biorthogonal multiresolution analysis of L*(R) if

IHR) = V, ® (V)"
Remark 3.1
i) It is clear that we have, for every j € Z, the equality
(R) =V, ® (V)"
ii) If we consider the application f— P]. f where Pj is the projector from
I*(R) into V. parallel to (V:)L_ In this case, we say that we have a
biorthogonal multiresolution analysis denoted by BMRA.

For a BMRA , we have the following properties:

a)

PP, =P oP.=P, (3.2)
b)
i [BA], =0 and Jim|s P, =0 3.3

for fe I[A(R).
c) (g9(x—k)), ,and (g (=~ k)),_, are respectively the Riesz basis of V
and V" such that

<glz-h/gx-1) >=3 (34)

kl?
and we have

Pr=3<f/g,>9,

keZ

where

I )
g, (@) =2 9@ k),
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(z) = Q%g*(ij - k).

g,
and (y'(z— k)),_, are respectively the Riesz basis of W =
tand Wy

d) (2 8),,
Vi (V) = V] n (V,)* such that
<y W) o= 5, (35)
The projector @ from I*(R) on W,= V. ~ (V)" parallel to (W)*

is given by Q=P P and we have
QI =Y <I/v,, >,
keZ

where

J
v, (@) = 20y~ ),

J .
v (@) =227 2z - k).

The functions g and g¢" are called conjugate scaling functions of the
biorthogonal multiresolution analysis (Vﬁ V:) and the functions y
and y" are called the associated wavelets.

The functions g, ¢', y and y* have to be compactly supported in
order to get fast wavelet transformations. If we assume that supp ¢
= [N,, N)) and supp ¢ = [N;, N,], then we have the scale equations.

g(g) = i a,g(z — k). (3.6)

k=N,

g (g) = i a,g (z k). (3.7)

9(28) = My(e™)4(8), (3:8)
where
1&
M (z) = Ekzwl az".
§*(28) = M (e™)g * (8), (3.9)

where
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1V2
M;(z) = L Z a,kzk.
2 k=N,

¥(28) = ¢ M (e)g(8)- (3.10)
7 *(28) = M (=) % (8). (3.11)

Then, we obtain

I 1—N2+N1 1+N2—N1
suny = 1—N2+N] 1+N2 —Nl
pPY = 9 ) 9 : (3.13)

If we assume that g € H' then there exist two conjugate scaling
functions G, G such that

9'(2) = G() - G(z— 1), (3.14)
and

(G(2) =g(z+1) -~ g(a) (3.15)
Moreover, if we denote by P, (resp Pj“) associated with (G, G")) the
projector from I*(R) into V, (resp V(" parallel to (V)" (vesp (V™))"
then we have the following commutation property

d d

—oP =PYo—.
de 7 Tdx (3.16)
This property provides essentially from (3.15). Moreover, the
associated functions M,, M, the wavelets y; and the projectors
QY, Q' satisfy

M (@) =—M (@) (3.17)
M) == My () (318)
Y =4y, 3.19
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- 1)
O(Q. = Q o -
5 j j » (321)

This property is adapted for the study of divergence free vectors
Lemarié-Rieusset (1992).

4. The Study of Regular Spaces Functions

We use the integration and derivation method described above for
constructing a biorthogonal multiresolution analysis. As applications, we
prove that these analyses are adapted to study regular functions.
Theorem 4.1 Let V] be the orthogonal multiresolution analysis of L*(R)
with the scaling function ¢ of class C™(m € N’). We denote by V(™ and
V(" the multiresolution analysis constructed by m derivations and m
integrations. Then V™ and V(™ form a biorthogonal multiresolution analysis
of I*(R). Moreover, if we denote by P(™ the projector on V™ parallel to
[VI(]*, we have
d m _ plad) O
dx on - P] Odz- 1)
The above-described method can be applied for Riesz bases constrcution
of the spaces VI and V™. In fact, we define g and g" by

(L—e™)"3(8) = (i&)"§(E), (4.2)
(i€)" (&) = (e* ~1)" 4(8). (4.3)

Proposition 4.1 Let (™ be the projector on V™ parallel to (V)" and
P its adjoint. We dene
Q' — p*m1) _ p(m

J j j
Q*(m) = p'm _ p*m)

J J+1 J

Then we have the following commutation properties

d m m+1 df

%(Pf 'f) =P} )(Ej if fe H(R), (4.4)
d *(m+1 *(m df
—— (P = P )(E] if fe H'(R). (4.5)

Proof. To prove this Proposition, it is enough to remark that if fe H!
and g € H', then we have

(P1g)p =, P9
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({2}

We can now establish the main result of this section.

Theorem 4.2 Assume that ¢ is a C***-function, p € N*, p>mand € > 0.
Then we have
1

2)5
e
5
2\2
,) -

iii) For s € Z such that —m < s < p — m; we have

o (fe ) (P"fe ?and 2, 47|[QMf]]; < + ).

o (fe H’) & (P™ fe I’ and 2 47||Q/"f|]; < + ).

Proof. The proof of this Theorem is classical in the wavelet theory. The
direct inequalities in i) and ii) can be easily obtained from the vaguelet
Lemma Jouini et Al (1992) and the inverse inequalities can be obtained by

duality. The equivalences in iii) are immediate because if f € H*® then its
norm is equal to ||f][, + ||f“][,- We set

[=POrE Y QY

Q"

i) For fe I ”f”g ~ ”Po(m)fH2 & (z

j=0

i) For fe I2 |f], = |7/, +(z

Qs

720

then, we have

» 5 \frac12
= [Emsd + (Sl

J=0

S d ] m = m m+s s Z m+s s

9 :[_) (P(f 134! )fj P 0 13 Qe 0,
dx - gy

&

2 \2

2) ’

< O”PO(m)f
2

”f(S)

2 m+s) p(k) 3 (m+s) £(s)
b+ (Sl
j=0

thus, we obtain

HPU(mH)f(S)

Lo

yore

07

~ 2%

s ", -

2
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Then the characterization of H*® is immediate.

Remark 4.1

i)

ii)

We can use the method described in this paper to construct in an
elementary way general biorthogonal multiresolution analysesin bounded
domains as those involved in (Ajmi et Al (2001), Bibi et Al (2008),
Jouini (2007) and Jouini et Al (2013)).

Biorthogonal multiresolution analyses have many applications as
Numerical Simulation for elliptic problems, digital image processing
and potential applications (Berrezoug et Al (2009), Rubeck (2012),and
Elk—eet Al (2004)).

5. Conclusion

In this paper, we described more general constructions of biorthogonal
multiresolution analyses. More precisely, we constructed biorthogonal
systems which are provided by dyadic translations and dilatations of a
new mother wavelet. By using the method of derivation and integration,
we obtain new regular biorthogonal multiresolution analyses which satisfy
the commutation properties (3.16), (3.21) and (4.1). We then deduced
that these analyses are well adapted for the study of the Sobolev spaces
H(R) and H*(R) (s € N).
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